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Self Assessment of Scientific and Programmatic Impact
The in-spiral and merger of two neutron stars produces several signals observable on Earth. The in-spiral
of two compact objects produces gravitational waves—ripples in spacetime—detectable by the LIGO and
VIRGO detectors. The two stars will tidally disrupt each other, throwing off material, some of which escapes
and some of which forms a disk of hot nuclear matter accreting onto the central remnant. This accretion
drives a pair of powerful ultra-relativistic jets of material along the polar axis. These jets are ultimately
responsible for producing short gamma-ray bursts, some of the most brilliant and energetic events in the
cosmos.

Accretion also drives a hot, (relatively) neutron-rich quasi-spherical outflow off the disk. This wind,
along with material unbound during tidal disruption (called ejecta), is a site for r-process nucleosynthesis.
Heavy elements are formed and their subsequent radioactive decay powers an electromagnetic afterglow that
lasts for several weeks. This afterglow is known as a kilonova or macronova. The color of this afterglow
depends heavily on the elements produced during nucleosynthesis. If the material is sufficiently neutron
rich, it produces lanthanides, which are opaque to blue optical light, making the kilonova red. If it is less
neutron rich, the absence of lanthanides implies that the kilonova may start blue before reddening.

Tidal ejecta always produces a red kilonova. The literature was divided on whether or not a blue kilonova
can be produced in the disk wind. In the first year of the w19_nubhlight proposal, we resolved this
ambiguity. In [1] we presented our code, abhlight and described the rigorous tests we had performed
to ensure scientific correctness. Then, in [2], a multi-disciplinary LANL-based team, led by PI J. Miller,
simulated a disk formed after the 2017 neutron star merger and showed that a blue kilonova can be produced
by disk wind. This helps explain observations in 2017, which showed a kilonova with both red and blue
components.

We also investigated a connection between neutron star merger disks and disks formed in so-called “failed
supernovae,” also called collapsars. We found that, although the physics is quite similar, very few heavy
elements are produced in collapsar disks [3]. We also contributed a plot to a review paper [4] on Kilonovae.
These works received significant attention and have been high-impact—combined they have received well
over 100 citations in the few years since publication, and have resulted in about half a dozen high-profile
invited talks.

In the second year, we expanded scope significantly. We performed preliminary calculations of black
hole-neutron star mergers, which we expect to result in a high-profile student publication [5]. We also
contributed to the analysis of the electromagnetic afterglow of such events [6] and the associated gamma ray
burst [7].

We also successfully engaged in related science. The nuclear and neutrino physics of core-collapse
supernovae is rather similar to that of collapsars and neutron star mergers. With a (now graduated) PhD
student, Sanjana Curtis, we performed a large modeling effort of core collapse supernova light curves [8].
Similarly, the accretion physics of the common-envelope phase of a black hole and a massive star is related to
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the accretion physics of post-merger disks. Directors’ Fellow postdoc SoumiDe performed simulations of this
scenario with abhlight and a publication is in preparation [9]. We also engaged with a graduate student,
Joanna Piotrowska, on numerical methods research for spectral methods, resulting in another publication
[10].
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• This allocation has supported work performed under the “Nucleosynthetic Probes of Cosmic Explo-
sions” LDRD DR grant. Work using this allocation accounts for about 0.3 FTE’s of labor from that
project.

• Work performed here helped us seek out additional funding from a CSES rapid response grant for
follow-up work on neutron star-black hole mergers. This accounts for about 0.3 FTEs of funding
acquired.

• Work performed here led us to seek out an additional IC allocation for follow up work to support the
CSES rapid response grant, which we received.

• Directors Fellow postdoc Soumi De utilized this IC allocation for her modeling. This allocation
accounted for approximately 0.3 FTEs of labor from that project.

• Gradutate student Joanna Piotrowska, visiting under CNLS fellowship, utilized this allocation. It
accounted for approximately 0.1 FTEs of labor for that project.
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